3.3.60 \(\int x^m \sec ^3(a+2 \log (c x^{\frac {1}{2} \sqrt {-(1+m)^2}})) \, dx\) [260]

3.3.60.1 Optimal result
3.3.60.2 Mathematica [A] (verified)
3.3.60.3 Rubi [C] (verified)
3.3.60.4 Maple [F]
3.3.60.5 Fricas [C] (verification not implemented)
3.3.60.6 Sympy [F(-1)]
3.3.60.7 Maxima [B] (verification not implemented)
3.3.60.8 Giac [C] (verification not implemented)
3.3.60.9 Mupad [B] (verification not implemented)

3.3.60.1 Optimal result

Integrand size = 31, antiderivative size = 110 \[ \int x^m \sec ^3\left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right ) \, dx=\frac {x^{1+m} \sec \left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right )}{2 (1+m)}+\frac {x^{1+m} \sec \left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right ) \tan \left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right )}{2 \sqrt {-(1+m)^2}} \]

output
1/2*x^(1+m)*sec(a+2*ln(c*x^(1/2*(-(1+m)^2)^(1/2))))/(1+m)+1/2*x^(1+m)*sec( 
a+2*ln(c*x^(1/2*(-(1+m)^2)^(1/2))))*tan(a+2*ln(c*x^(1/2*(-(1+m)^2)^(1/2))) 
)/(-(1+m)^2)^(1/2)
 
3.3.60.2 Mathematica [A] (verified)

Time = 1.52 (sec) , antiderivative size = 198, normalized size of antiderivative = 1.80 \[ \int x^m \sec ^3\left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right ) \, dx=\frac {x^{1+m} \left ((1+m) \cos \left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right )-\sqrt {-(1+m)^2} \sin \left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right )\right )}{2 (1+m)^2 \left (\cos \left (\frac {a}{2}+\log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right )-\sin \left (\frac {a}{2}+\log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right )\right )^2 \left (\cos \left (\frac {a}{2}+\log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right )+\sin \left (\frac {a}{2}+\log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right )\right )^2} \]

input
Integrate[x^m*Sec[a + 2*Log[c*x^(Sqrt[-(1 + m)^2]/2)]]^3,x]
 
output
(x^(1 + m)*((1 + m)*Cos[a + 2*Log[c*x^(Sqrt[-(1 + m)^2]/2)]] - Sqrt[-(1 + 
m)^2]*Sin[a + 2*Log[c*x^(Sqrt[-(1 + m)^2]/2)]]))/(2*(1 + m)^2*(Cos[a/2 + L 
og[c*x^(Sqrt[-(1 + m)^2]/2)]] - Sin[a/2 + Log[c*x^(Sqrt[-(1 + m)^2]/2)]])^ 
2*(Cos[a/2 + Log[c*x^(Sqrt[-(1 + m)^2]/2)]] + Sin[a/2 + Log[c*x^(Sqrt[-(1 
+ m)^2]/2)]])^2)
 
3.3.60.3 Rubi [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 0.45 (sec) , antiderivative size = 151, normalized size of antiderivative = 1.37, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.097, Rules used = {5020, 5016, 888}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int x^m \sec ^3\left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )\right ) \, dx\)

\(\Big \downarrow \) 5020

\(\displaystyle \frac {2 x^{m+1} \left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )^{-\frac {2 (m+1)}{\sqrt {-(m+1)^2}}} \int \left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )^{\frac {2 (m+1)}{\sqrt {-(m+1)^2}}-1} \sec ^3\left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )\right )d\left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )}{\sqrt {-(m+1)^2}}\)

\(\Big \downarrow \) 5016

\(\displaystyle \frac {16 e^{3 i a} x^{m+1} \left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )^{-\frac {2 (m+1)}{\sqrt {-(m+1)^2}}} \int \frac {\left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )^{\frac {2 (m+1)}{\sqrt {-(m+1)^2}}-(1-6 i)}}{\left (e^{2 i a} \left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )^{4 i}+1\right )^3}d\left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )}{\sqrt {-(m+1)^2}}\)

\(\Big \downarrow \) 888

\(\displaystyle \frac {8 e^{3 i a} x^{m+1} \left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )^{6 i} \operatorname {Hypergeometric2F1}\left (3,\frac {1}{2} \left (3-\frac {i (m+1)}{\sqrt {-(m+1)^2}}\right ),\frac {1}{2} \left (5-\frac {i (m+1)}{\sqrt {-(m+1)^2}}\right ),-e^{2 i a} \left (c x^{\frac {1}{2} \sqrt {-(m+1)^2}}\right )^{4 i}\right )}{\sqrt {-(m+1)^2} \left (\frac {m+1}{\sqrt {-(m+1)^2}}+3 i\right )}\)

input
Int[x^m*Sec[a + 2*Log[c*x^(Sqrt[-(1 + m)^2]/2)]]^3,x]
 
output
(8*E^((3*I)*a)*x^(1 + m)*(c*x^(Sqrt[-(1 + m)^2]/2))^(6*I)*Hypergeometric2F 
1[3, (3 - (I*(1 + m))/Sqrt[-(1 + m)^2])/2, (5 - (I*(1 + m))/Sqrt[-(1 + m)^ 
2])/2, -(E^((2*I)*a)*(c*x^(Sqrt[-(1 + m)^2]/2))^(4*I))])/(Sqrt[-(1 + m)^2] 
*(3*I + (1 + m)/Sqrt[-(1 + m)^2]))
 

3.3.60.3.1 Defintions of rubi rules used

rule 888
Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[a^p 
*((c*x)^(m + 1)/(c*(m + 1)))*Hypergeometric2F1[-p, (m + 1)/n, (m + 1)/n + 1 
, (-b)*(x^n/a)], x] /; FreeQ[{a, b, c, m, n, p}, x] &&  !IGtQ[p, 0] && (ILt 
Q[p, 0] || GtQ[a, 0])
 

rule 5016
Int[((e_.)*(x_))^(m_.)*Sec[((a_.) + Log[x_]*(b_.))*(d_.)]^(p_.), x_Symbol] 
:> Simp[2^p*E^(I*a*d*p)   Int[(e*x)^m*(x^(I*b*d*p)/(1 + E^(2*I*a*d)*x^(2*I* 
b*d))^p), x], x] /; FreeQ[{a, b, d, e, m}, x] && IntegerQ[p]
 

rule 5020
Int[((e_.)*(x_))^(m_.)*Sec[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)]^(p_ 
.), x_Symbol] :> Simp[(e*x)^(m + 1)/(e*n*(c*x^n)^((m + 1)/n))   Subst[Int[x 
^((m + 1)/n - 1)*Sec[d*(a + b*Log[x])]^p, x], x, c*x^n], x] /; FreeQ[{a, b, 
 c, d, e, m, n, p}, x] && (NeQ[c, 1] || NeQ[n, 1])
 
3.3.60.4 Maple [F]

\[\int x^{m} {\sec \left (a +2 \ln \left (c \,x^{\frac {\sqrt {-\left (1+m \right )^{2}}}{2}}\right )\right )}^{3}d x\]

input
int(x^m*sec(a+2*ln(c*x^(1/2*(-(1+m)^2)^(1/2))))^3,x)
 
output
int(x^m*sec(a+2*ln(c*x^(1/2*(-(1+m)^2)^(1/2))))^3,x)
 
3.3.60.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.24 (sec) , antiderivative size = 81, normalized size of antiderivative = 0.74 \[ \int x^m \sec ^3\left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right ) \, dx=-\frac {2 \, {\left (2 \, x^{2} x^{2 \, m} e^{\left (3 i \, a + 6 i \, \log \left (c\right )\right )} + e^{\left (5 i \, a + 10 i \, \log \left (c\right )\right )}\right )}}{{\left (m + 1\right )} x^{4} x^{4 \, m} + 2 \, {\left (m + 1\right )} x^{2} x^{2 \, m} e^{\left (2 i \, a + 4 i \, \log \left (c\right )\right )} + {\left (m + 1\right )} e^{\left (4 i \, a + 8 i \, \log \left (c\right )\right )}} \]

input
integrate(x^m*sec(a+2*log(c*x^(1/2*(-(1+m)^2)^(1/2))))^3,x, algorithm="fri 
cas")
 
output
-2*(2*x^2*x^(2*m)*e^(3*I*a + 6*I*log(c)) + e^(5*I*a + 10*I*log(c)))/((m + 
1)*x^4*x^(4*m) + 2*(m + 1)*x^2*x^(2*m)*e^(2*I*a + 4*I*log(c)) + (m + 1)*e^ 
(4*I*a + 8*I*log(c)))
 
3.3.60.6 Sympy [F(-1)]

Timed out. \[ \int x^m \sec ^3\left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right ) \, dx=\text {Timed out} \]

input
integrate(x**m*sec(a+2*ln(c*x**(1/2*(-(1+m)**2)**(1/2))))**3,x)
 
output
Timed out
 
3.3.60.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 976 vs. \(2 (92) = 184\).

Time = 0.31 (sec) , antiderivative size = 976, normalized size of antiderivative = 8.87 \[ \int x^m \sec ^3\left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right ) \, dx=\text {Too large to display} \]

input
integrate(x^m*sec(a+2*log(c*x^(1/2*(-(1+m)^2)^(1/2))))^3,x, algorithm="max 
ima")
 
output
2*((cos(a)*cos(2*log(c)) - sin(a)*sin(2*log(c)))*x*e^(m*log(x) + 14*arctan 
2(sin(1/2*m*log(x)), cos(1/2*m*log(x))) + 14*arctan2(sin(1/2*log(x)), cos( 
1/2*log(x)))) + 2*(((cos(2*a)*cos(a) + sin(2*a)*sin(a))*cos(2*log(c)) + (c 
os(a)*sin(2*a) - cos(2*a)*sin(a))*sin(2*log(c)))*cos(4*log(c)) - ((cos(a)* 
sin(2*a) - cos(2*a)*sin(a))*cos(2*log(c)) - (cos(2*a)*cos(a) + sin(2*a)*si 
n(a))*sin(2*log(c)))*sin(4*log(c)))*x*e^(m*log(x) + 10*arctan2(sin(1/2*m*l 
og(x)), cos(1/2*m*log(x))) + 10*arctan2(sin(1/2*log(x)), cos(1/2*log(x)))) 
 + (((cos(4*a)*cos(a) + sin(4*a)*sin(a))*cos(2*log(c)) + (cos(a)*sin(4*a) 
- cos(4*a)*sin(a))*sin(2*log(c)))*cos(8*log(c)) - ((cos(a)*sin(4*a) - cos( 
4*a)*sin(a))*cos(2*log(c)) - (cos(4*a)*cos(a) + sin(4*a)*sin(a))*sin(2*log 
(c)))*sin(8*log(c)))*x*e^(m*log(x) + 6*arctan2(sin(1/2*m*log(x)), cos(1/2* 
m*log(x))) + 6*arctan2(sin(1/2*log(x)), cos(1/2*log(x)))))/((cos(4*a)^2 + 
sin(4*a)^2)*cos(8*log(c))^2 + (cos(4*a)^2 + sin(4*a)^2)*sin(8*log(c))^2 + 
((cos(4*a)^2 + sin(4*a)^2)*cos(8*log(c))^2 + (cos(4*a)^2 + sin(4*a)^2)*sin 
(8*log(c))^2)*m + (m + 1)*e^(16*arctan2(sin(1/2*m*log(x)), cos(1/2*m*log(x 
))) + 16*arctan2(sin(1/2*log(x)), cos(1/2*log(x)))) + 4*((cos(2*a)*cos(4*l 
og(c)) - sin(2*a)*sin(4*log(c)))*m + cos(2*a)*cos(4*log(c)) - sin(2*a)*sin 
(4*log(c)))*e^(12*arctan2(sin(1/2*m*log(x)), cos(1/2*m*log(x))) + 12*arcta 
n2(sin(1/2*log(x)), cos(1/2*log(x)))) + 2*(2*(cos(2*a)^2 + sin(2*a)^2)*cos 
(4*log(c))^2 + 2*(cos(2*a)^2 + sin(2*a)^2)*sin(4*log(c))^2 + (2*(cos(2*...
 
3.3.60.8 Giac [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 11.64 (sec) , antiderivative size = 834, normalized size of antiderivative = 7.58 \[ \int x^m \sec ^3\left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right ) \, dx=\text {Too large to display} \]

input
integrate(x^m*sec(a+2*log(c*x^(1/2*(-(1+m)^2)^(1/2))))^3,x, algorithm="gia 
c")
 
output
c^(6*I)*m*x*x^m*x^abs(m + 1)*e^(3*I*a)/(c^(8*I)*m^2*e^(4*I*a) + 2*c^(8*I)* 
m*e^(4*I*a) + c^(8*I)*e^(4*I*a) + 2*c^(4*I)*m^2*x^(2*abs(m + 1))*e^(2*I*a) 
 + 4*c^(4*I)*m*x^(2*abs(m + 1))*e^(2*I*a) + 2*c^(4*I)*x^(2*abs(m + 1))*e^( 
2*I*a) + m^2*x^(4*abs(m + 1)) + 2*m*x^(4*abs(m + 1)) + x^(4*abs(m + 1))) - 
 c^(6*I)*x*x^m*x^abs(m + 1)*abs(m + 1)*e^(3*I*a)/(c^(8*I)*m^2*e^(4*I*a) + 
2*c^(8*I)*m*e^(4*I*a) + c^(8*I)*e^(4*I*a) + 2*c^(4*I)*m^2*x^(2*abs(m + 1)) 
*e^(2*I*a) + 4*c^(4*I)*m*x^(2*abs(m + 1))*e^(2*I*a) + 2*c^(4*I)*x^(2*abs(m 
 + 1))*e^(2*I*a) + m^2*x^(4*abs(m + 1)) + 2*m*x^(4*abs(m + 1)) + x^(4*abs( 
m + 1))) + c^(6*I)*x*x^m*x^abs(m + 1)*e^(3*I*a)/(c^(8*I)*m^2*e^(4*I*a) + 2 
*c^(8*I)*m*e^(4*I*a) + c^(8*I)*e^(4*I*a) + 2*c^(4*I)*m^2*x^(2*abs(m + 1))* 
e^(2*I*a) + 4*c^(4*I)*m*x^(2*abs(m + 1))*e^(2*I*a) + 2*c^(4*I)*x^(2*abs(m 
+ 1))*e^(2*I*a) + m^2*x^(4*abs(m + 1)) + 2*m*x^(4*abs(m + 1)) + x^(4*abs(m 
 + 1))) + c^(2*I)*m*x*x^m*x^(3*abs(m + 1))*e^(I*a)/(c^(8*I)*m^2*e^(4*I*a) 
+ 2*c^(8*I)*m*e^(4*I*a) + c^(8*I)*e^(4*I*a) + 2*c^(4*I)*m^2*x^(2*abs(m + 1 
))*e^(2*I*a) + 4*c^(4*I)*m*x^(2*abs(m + 1))*e^(2*I*a) + 2*c^(4*I)*x^(2*abs 
(m + 1))*e^(2*I*a) + m^2*x^(4*abs(m + 1)) + 2*m*x^(4*abs(m + 1)) + x^(4*ab 
s(m + 1))) + c^(2*I)*x*x^m*x^(3*abs(m + 1))*abs(m + 1)*e^(I*a)/(c^(8*I)*m^ 
2*e^(4*I*a) + 2*c^(8*I)*m*e^(4*I*a) + c^(8*I)*e^(4*I*a) + 2*c^(4*I)*m^2*x^ 
(2*abs(m + 1))*e^(2*I*a) + 4*c^(4*I)*m*x^(2*abs(m + 1))*e^(2*I*a) + 2*c^(4 
*I)*x^(2*abs(m + 1))*e^(2*I*a) + m^2*x^(4*abs(m + 1)) + 2*m*x^(4*abs(m ...
 
3.3.60.9 Mupad [B] (verification not implemented)

Time = 31.92 (sec) , antiderivative size = 176, normalized size of antiderivative = 1.60 \[ \int x^m \sec ^3\left (a+2 \log \left (c x^{\frac {1}{2} \sqrt {-(1+m)^2}}\right )\right ) \, dx=\frac {\frac {x^{m+1}\,{\mathrm {e}}^{a\,1{}\mathrm {i}}\,{\left (c\,x^{\frac {\sqrt {-m^2-2\,m-1}}{2}}\right )}^{2{}\mathrm {i}}\,\left (m\,1{}\mathrm {i}+\sqrt {-{\left (m+1\right )}^2}+1{}\mathrm {i}\right )}{\sqrt {-{\left (m+1\right )}^2}}-\frac {x^{m+1}\,{\mathrm {e}}^{a\,1{}\mathrm {i}}\,{\left (c\,x^{\frac {\sqrt {-m^2-2\,m-1}}{2}}\right )}^{6{}\mathrm {i}}\,\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,1{}\mathrm {i}-{\mathrm {e}}^{a\,2{}\mathrm {i}}\,\sqrt {-{\left (m+1\right )}^2}+m\,{\mathrm {e}}^{a\,2{}\mathrm {i}}\,1{}\mathrm {i}\right )}{\sqrt {-{\left (m+1\right )}^2}}}{\left (m+1\right )\,{\left ({\mathrm {e}}^{a\,2{}\mathrm {i}}\,{\left (c\,x^{\frac {\sqrt {-m^2-2\,m-1}}{2}}\right )}^{4{}\mathrm {i}}+1\right )}^2} \]

input
int(x^m/cos(a + 2*log(c*x^((-(m + 1)^2)^(1/2)/2)))^3,x)
 
output
((x^(m + 1)*exp(a*1i)*(c*x^((- 2*m - m^2 - 1)^(1/2)/2))^2i*(m*1i + (-(m + 
1)^2)^(1/2) + 1i))/(-(m + 1)^2)^(1/2) - (x^(m + 1)*exp(a*1i)*(c*x^((- 2*m 
- m^2 - 1)^(1/2)/2))^6i*(exp(a*2i)*1i - exp(a*2i)*(-(m + 1)^2)^(1/2) + m*e 
xp(a*2i)*1i))/(-(m + 1)^2)^(1/2))/((m + 1)*(exp(a*2i)*(c*x^((- 2*m - m^2 - 
 1)^(1/2)/2))^4i + 1)^2)